
Data Sheet LD-WR112-01-9300 Dry Load 9300MHz WR112

FT Mave

A

- Low-power RF load, designed as a termination of isolated circulator ports
- RF absorption via SiC inlay
- Air cooled
- Free of maintenance & wear parts
- RoHS compliant
- Designed for X-band LINACs

Parameter	Value		
Footprint Drawing No.	3-122996-FP		
Product Type	RF Load		
Configuration	Dry Load		
Center Frequency f ₀	9300 MHz		
Bandwidth BW	± 20 MHz		
Input Peak Power	25 kW max.		
Input Average Power	25 W max.		
Return Loss	≥ 30 dB		
VSWR	< 1.065		
RF Waveguide	WR112		
RF Flanges / Connectors	WR112 cover flange, UG-51/U, with 4x 8-32 UNC-28		
Cooling System	Air cooled by convection		
Waveguide Dielectric Filling Gas	SF6		
Gas Pressure	nominal:	3 bar absolute	
	maximum :	4 bar absolute	
Gas Leak Rate (Helium)	< 5·10 ⁻⁴ mbar l/s		
	device pressurized with He gas at 2.5 bar gauge		
Ambient Temperature	operating :	10°C to 40°C	
	storage :	0°C to 60°C	
Relative Humidity	< 80%, non-condensing		
Body Material	Aluminium		
Surface Finish	none		
Dimensions	see footprint drawing		
Weight	0.16 g approximately		
Mounting Orientation	any		

Author	C. Weil
Revision	00
Release	13.12.2022
Page	2 of 2

Ordering Code

LD-WR112-01-9300

Notes:

- 1 <u>Low-Power Acceptance Tests</u>: The following tests will be performed at the AFT factory before shipment: (1) small-signal network analyzer measurements of input return loss vs. frequency at room temperature, (2) He-gas leak rate testing.
- 2 <u>Documentation</u>: The documentation includes specification, footprint drawing, an inspection report and test result for return loss.

Rev.	Remark	Date	Name
00	Initial	23.11.2020	C. Weil
	Formal update	03.03.2022	C. Weil
	Footprint drawing no., weight	13.12.2022	C. Weil